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Abstract. The aim of this paper is to highlight the relevance of the neural net-
work paradigm application for the modeling of next generation wireless ampli-
fiers, which behave mostly nonlinearly due to the new highly-efficient modula-
tion techniques. A model that has the capability to leam and predict the dy-
namic behavior of nonlinear amplifiers based on a Time-Delayed Neural Net-
work (TDNN), is proposed. The model can be trained with input/output device
measurements or simulations, and a very good accuracy can be obtained in the
device characterization easily and rapidly. These properties make this kind of
models specially suitable for new wircless communications amplifiers that re-
quire speed, good model accuracy and simplicity in model building, to reduce
the time-to-market in the development process. The TDNN model has been
validated with Power Amplifier (PA) time-domain simulations.
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1 Introduction

The development of RF components for new generation wireless communications
devices, i.e. third generation (3G) mobile phones, needs new accurate and speed
modeling of its components [1]. The new highly-efficient modulation techniques
designed for the new communication standards have triggered new challenging is-
sues in the modeling and design of their components, because existing techniques
have become not suitable anymore for modeling the new amplifiers behavior [2],
related to the memory phenomena. In the time-domain, memory effects cause the
output of the amplifier to deviate from the desired linear output characteristic when
the signal changes, resulting in a deterioration of the whole system performance.
Moreover, in wireless communications, the transmitter amplifier can even introduce
nonlinearities in the signal when operating near its maximum output power [3].

A technique that is receiving increasing attention for the development of electronic
devices models is the Neural Network (NN) approach {4] since model tailoring to the
element under study only needs a training procedure based on simulated or measured
input-output time or frequency domain datasets. The model is considered as a black-
box in the sense that no knowledge of the internal structure is required and the model-
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ing information is completely included in the device external response. Due to this

feature, the model parameters can be effectively estimated from measured response or
simulated results, in an effective and timely manner.

The aim of this paper is to highlight the relevance of the NN paradigm application
for the modeling of next generation wireless amplifiers. This paper presents a new
neural network-based model that can be used for nonlinear RF/Microwave elements
modeling, using a NN which takes into account device nonlinearity and memory
effects. The proposed approach is tested with an amplifier simulation data.

The organization of the paper is the following: in the next Section, the neural net-
work-based device modeling approach is briefly presented; in Section 3 we present
the proposed NN model; in Section 4 the training and validation results are shown.

Finally, the conclusions and future work are reported in Section 5 and 6, respec-
tively.

2 Neural network-based device modeling

At present, the usefulness of simulators is limited in many practical cases by the
characteristics of the component models that are used. If a model becomes too com-
plex, simulation speed as well as accuracy decrease significantly. It is also possible
that it is very hard to construct an accurate model because of device physics, as 15
often the case with relatively new power transistor technologies. A possible solution
is to build generic black-box models describing the electrical behavior of a generic
component, expressing measured behavior of an object with equations that are func-
tion of the independent variables that control the object’s behavior [5]. The model
parameters can be calculated based upon measured data or on simulated data.
These kind of models have become the object of extensive research during the last
few years [6]. In particular for the modeling of amplifiers with memory effects [7],
two main approaches have been proposed lately: polynomial models (8] and NN-
based models. However, the polynomial method has the disadvantage of possible
convergence problems when extrapolating the data and the polynomial order con-
straints the model applicability. .
Recently NNs have been preferred over other methods because of their speed I
implementation and accuracy, and they have been successfully applied to several RF
and Microwave applications [9]. By profiting from their potential to learn the circuit
behavior based on simulated or measured records of its input and output signals, they
were used in nonlinear modeling and design of many microwave circuits and systems.
Neural network-based models can nowadays be seen as a potential alternative to
model amplifiers having medium-to-strong memory effects along with high-order
nonlinearity. Modern high-capacity links involve large signal bandwidths, and there-
fore amplifier models should also take into account the amplifier distortion due to
both the amplitude and the bandwidth of the input signal [10]. However, many of the
actual proposals involve complicated network topologies and special training algo-

rithms that make execution time very long. Furthermore, most of these models de-
mand an expert user for the creation and manipulation of the model.
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For example, for the modeling of the nonlinear behavior of microwave compo-
nents in the frequency-domain, the work in [11] proposes the use of describing func-
tions for the device behavior, which are fitted to the measurements using NNs. For
training this model, special frequency-domain nonlinear measurements of the device
behavior are needed, obtained using a special equipment named Nonlinear Network
Measurement System (NNMS), which is not always available in any laboratory. It
also proposes the use of many small neural networks, trained simultaneously, which
introduces the problems of how to divide the variables intro different models, how to
coordinate the learning and how to mix the results at the output, all of them affecting
model speed.

In [12] a power amplifier is modeled, in the time-domain, but including also the
temperature (self-heating) as a controlling variable, therefore influencing the neural
model with the internal physics of the device considered. This.way, it is not a general
model, it strongly depends on the device physics and technology, therefore limiting
its use. For example, for some devices the temperature influence may be not so im-
portant to take into account and in that case the model becomes useless.

A different approach is presented in [13] where the idea is to model a communica-
tion system, handling complex (real and imaginary part) input/output signals. The
model proposed needs a network topology that represents both parts of the signal,
needing special signals measurements. This model is application-dependent, also
influenced by the type of device modeled. It is a model particularly suited for repre-
senting communication systems elements. But if the idea is to model a generic ampli-
fier, and the only available measurements are input and output device power, it could
not be used.

Differently from all the above mentioned approaches, we would like to have, in-
stead, a model that could be trained with simple and standard time-domain measure-
ments easily generated in a lab, and formed by one single network which leamns in a
standard way and has no special feature to make slow its speed of convergence, if it
has enough data to generalize. The model should not consider explicitly a particular
physical or technological feature of the device (i.e. the temperature influence on the
output behavior; the material used to build it) but implicitly, inside the input/output
measurements that are used for training the model. The idea is to have a kind of
“plug-and-play” model, which could be used to model any kind of device or circuit.
In this paper we propose a model that accounts for all these desired characteristics.
Our proposal in explained in detail in the next Section.

3 Time-delayed neural network model

Many topologies of NNs are reported in the literature for the modeling of different
types of circuits and systems, with different kinds of linear and nonlinear behavior
[14]. However, not any NN type and topology can be used for the representation of a
system which has a nonlinear behavior and is dynamic, intending by dynamic not
only that the device characteristic varies over time but also that it depends on past
values of its controlling input variables. For the representation of this kind of sys-
tems, Time-Delayed NNs (TDNN) should be used, because the continuous time sys-
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tem derivatives can be approximated by time-delays of the input/output variables in
the discrete time [15]. Due to this reason a TDNN model has been chosen for the
model, having nonlinear activation functions in the hidden layer.

TDNN model
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Fig. 1. Time-delayed Neural Network (TDNN) model for a power amplifier.

The model has the classical topology for universal approximation, three lay-ers: th_e
input variable and its delayed samples (in the case of a power amplifier, the lflpuf 18
only one variable, input power), the nonlinear hidden layer and a linear combination
of the hidden neurons outputs at the output neuron (for a power amplifier, output
power). All neurons have bias values, which allows to have more degrees of fr_CEdom
for the learning algorithm and therefore more parameters that can be Optlm'lzed to
better represent the system. To improve network accuracy and speed up learning, the
inputs are normalized to the domain of the hidden neurons nonlinear activation func-
tions. M is memory depth or the number of delayed input samples; it rept:esents the
accuracy in the characterization bandwidth shaping. H is the number of hidden neu-
rons chosen to perform the best fitting of the training waveforms. The architecture of
the TDNN is shown in figure 1, while equation 1 presents its corresponding input-
output analytical expression.

H M
h=1 k=0

To build a model of a power amplifier, the TDNN model is trained with device in-
put/output time-domain measurements. The input and output power waveforms ar_e‘.
expressed in terms of their discrete samples in the time-domain. The tap de.lay Z
between successive samples must be a multiple or equal to the data sampling time T,
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and it is calculated as MT,; = M/F;, being F, the data sampling frequency. The net-
work parameters are optimized using a second-order backpropagation algorithm. The
Levenberg-Marquardt algorithm [15]) has been chosen due to its good performance
and speed in execution. To evaluate the TDNN learning accuracy, the mean square
error (mse) is calculated, using equation 2, being T the number of input/output pairs

in the training set.

1< 2 1 &
MSGZFZS(IC) =FZ(Vour(k)—Vow_NN(k))z (2)

k=1

The good generality property of a neural network says that it must perform well on
a new dataset distinct from the one used for training. A very small value of the mean
square error on training does not necessarily imply that a good model has been ob-
tained and that it can generalize good to new inputs. Even excessive training (number
of epochs or iterations) on the learning phase could make performance to decrease,
causing the over-fitting phenomenon. That is why, to avoid it, we divide the total
amount of data available from measurement/simulation into training and validation
subsets, all equally spaced. We have used the “early-stopping” technique [17], where
if there is a succession of training epoch in which performance improves only for the
training data and not for the validation data, over-fitting has occurred and the learning
is terminated. The model training and validation results are shown in the next Section.

4 Training and validation results

The learning procedure is performed fitting the input/output voltages waveforms of
the device to the TDNN model. In this study, the training procedure is performed
based on simulations of a dynamic time-domain characterization of a power ampli-
fier, using an amplitude single-sideband modulated signal. The input and output
waveform appear in figure 2.

The initialization of the network is an important issue for training the TDNN with
the back-propagation algorithm, that is why the initial weights and biases of the net-
work are calculated using the Nguyen-Widrow initial conditions [18], instead of a

purely random initialization.
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Fig. 2. Amplifier input (left) and output (right) signal.

In this study, we have made a comparison among several possible models to try t0
find the best topology for the neural model, regarding the amount of memory for ?he
model (number of delayed inputs), the number of hidden neurons and its acti\:ratlf’rl
function. The aim of this comparison is to highlight the relevance of the inclusion of
memory in this kind of models compared with a static (or not memory at all) model.
That is why we compare the static model (no memory, only 1 input) against models
having an arbitrarily number of delays: on the one hand, 1 delayed input (that is t0
say, 2 inputs to the network) and on the other hand, 3 delayed inputs (4 inputs to the
model).

Then, we have chosen two possible nonlinear activation functions for the hidqen
layer, the hyperbolic tangent (traditionally used in the electronics field for modeling
the behavior of nonlinear devices) and the sigmoid function. We have chose:n.tl'lem
because they allow representing a dynamic system of almost any order, without
knowing the system order beforehand. The only difference among them is their input
interval. In fact the results confirm the fact that both of them can be used for the
model, without substantial difference in the results.

Finally, to help in the election of the number of hidden neurons, models having 3
5 and 10 hidden units are compared. The number of hidden neurons is important,
because when the model is implemented inside a circuit simulator, a large number of
hidden units could make simulation time significantly longer and complicate model
implementation.

The results of the comparisons are presented in Table 1. These numbers are the re—
sults of executing twice each model, choosing for the comparison the higher ap—
proximation mean square error (mse). Looking at the results, the error in every col—
umn diminish as more hidden units are added, and along each row, it further de—
creases as more delayed input samples are included in the model.

As can be seen, the results from both types of activation functions are very close
Concerning the number of hidden neurons, the minimum mse for this problera
(marked with *) can be reached with a neural network having 5 hidden units and 3
delayed input samples (a total of 4 inputs). Therefore we have identified the preferre d
topology for TDNN model of the power amplifier under study (marked in bold).as a
model having sigmoid or hyperbolic tangent activation function (in the simulation s,
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the sigmoid has been used), 5 hidden units and 4 inputs. The results that are shown
from now on refer to this topology.

Activation H No 1 delayed | 3 delayed
function memory sample samples
4 : "
Hygerbuile 1.4094 1.2141 1.1935
0.3970 0.7030 0.0003*
tangent

10 0.0052 0.0003* 0.0003*

1.4196 1.3461 0.8229

Sigmoid 5 0.3968 0.7106 0.0003*

10 0.0053 0.0003 * 0.0003*

Table 1. Comparisons among the mean square errors (mse) obtained after training
possible TDNN model topologies (* = 0.000324749).

The number of points T in each training and validation dataset is 2001 (the total
data interval is 1 second). For the training set, data at a different close frequency than
the training data has been used. The results of the learning phase of the best model are
shown in Fig. 3. The mean square error (mse) of the model reached after 39 epochs
was 0.000324749 for the training set, and 0.0819 for the validation set, as shows Fig.
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Fig. 3. Results of the TDNN model. Training data (left) and validation data (right)
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. Performance is 0.000324749
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Fig. 4. MSE of the training dataset during the learning phase.

S Conclusions

In this paper, a new model that has the capability to learn and predict the dynamic
behavior of nonlinear power amplifiers, based on a Time-Delayed Neural Network
(TDNN), has been proposed. The model is very general because it is not restricted by
device technology nor application constraints.

A comparison study among different model topologies has shown the relevance of
using delayed input samples to the model to improve accuracy in the model represen-
tation and reduce the mean square error.

Validation and accuracy of the TDNN model in the time-domain showed good
agreements between the model output data and simulations. The TDNN model can be
trained with input/output device measurements or simulations, and a very good accu-
racy can be obtained in the device characterization easily and rapidly.

These properties make this kind of models specially suitable for new wireless com-
munications devices modeling, which are mostly nonlinear, and require speed,
accuracy and simplicity when designing and building the model.

6 Future Work

We are actually developing a free software tool that allows building a TDNN model
for a generic device, training it with device measurements or simulations, and after
the learning phase is finished, it will generate a black-box model which could be

loaded and used inside any commercial electronic circuit simulator for
RF/Microwave applications.
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